This tutorial explains a pair of important user defined functions, the “Navigator_u” and the “Navigator_v”. These functions save the user nine columns of formulas by calculating the effects of: 3-dimensional shift, rotations around the three axes of coordinates and 3D-2D perspective transforms.

In the previous 3D perspective tutorials we took in consideration two angles of rotation, the azimuth and the altitude. In artillery, radar, astronomy or wherever we have a ground based platform with an aiming function we need only two angles (azimuth and altitude) to define the aiming direction.

The situation gets a bit more complicated in the case of a vehicle (ship, aircraft, or even a car) where we need to take care of a total of three angles:

- the yaw angle (formerly known as azimuth) defines rotation around the vertical - z axis
- the pitch angle or attitude (formerly known as altitude) defines rotation around the lateral - x axis
- the roll angle (new) defines rotation around longitudinal - y axis
The user defined function below is the first of a pair of functions which calculate spatial shift, three different types of rotations and the 3D-2D perspective conversion.
The user defined function below is the last of a pair of functions which calculate spatial shift, three different types of rotations and the 3D-2D perspective conversion.

User Defined Function declaration

Function Navigator_v (x0, y0, z0, dx, dy, dz, Yaw, Pitch, Roll, eye_scr, scr_orig, enable) As Double

Dim x, y, z, x1, y1, z1, x2, y2, z2, x3, y3, z3 As Double

x = x0 + dx
y = y0 + dy
z = z0 + dz

\[
x1 = x \cdot \sin(\text{Yaw} / 57.29578) + y \cdot \cos(\text{Yaw} / 57.29578)
y1 = x \cdot \cos(\text{Yaw} / 57.29578) - y \cdot \sin(\text{Yaw} / 57.29578)
z1 = z
\]

x2 = x1

\[
y2 = y1 \cdot \cos(\text{Pitch} / 57.29578) - z1 \cdot \sin(\text{Pitch} / 57.29578)
z2 = y1 \cdot \sin(\text{Pitch} / 57.29578) + z1 \cdot \cos(\text{Pitch} / 57.29578)
\]

x3 = z2 \cdot \sin(\text{Roll} / 57.29578) + x2 \cdot \cos(\text{Roll} / 57.29578)

y3 = y2

\[
z3 = z2 \cdot \cos(\text{Roll} / 57.29578) - x2 \cdot \sin(\text{Roll} / 57.29578)
\]

If enable = 1 Then

\[
\text{Navigator}_v = z3 \cdot \text{eye_scr} / (\text{eye_scr} + \text{scr_orig} + y3)
\]

Else

\[
\text{Navigator}_v = 9999
\]

End If

End Function

End of function declaration
Here is a final, cleaned up version of the two functions – comments are in green

Function Navigator_u(x0, y0, z0, dx, dy, dz, Yaw, Pitch, Roll, eye_scr, scr_orig) As Double
Dim x, y, z, x1, y1, z1, x2, y2, z2, x3, y3, z3 As Double

Yaw = Yaw / 57.29578 'convert degrees to radians and assign result back to same argument
Pitch = Pitch / 57.29578 'convert degrees to radians and assign result back to same argument
Roll = Roll / 57.29578 'convert degrees to radians and assign result back to same argument

x1 = (x0 + dx) * Sin(Yaw) + (y0 + dy) * Cos(Yaw)
y1 = (x0 + dx) * Cos(Yaw) - (y0 + dy) * Sin(Yaw)

y2 = y1 * Cos(Pitch) - (z0 + dz) * Sin(Pitch) ' x2 = x1
z2 = y1 * Sin(Pitch) + (z0 + dz) * Cos(Pitch)

x3 = z2 * Sin(Roll) + x1 * Cos(Roll) ' y3 = y2
z3 = z2 * Cos(Roll) - x1 * Sin(Roll)

Navigator_u = x3 * eye_scr / (eye_scr + scr_orig + y2) ' since y3 = y2
End Function

Function Navigator_v(x0, y0, z0, dx, dy, dz, Yaw, Pitch, Roll, eye_scr, scr_orig, enable) As Double
Dim x, y, z, x1, y1, z1, x2, y2, z2, x3, y3, z3 As Double

Yaw = Yaw / 57.29578 'convert degrees to radians
Pitch = Pitch / 57.29578 'convert degrees to radians
Roll = Roll / 57.29578 'convert degrees to radians

x1 = (x0 + dx) * Sin(Yaw) + (y0 + dy) * Cos(Yaw)
y1 = (x0 + dx) * Cos(Yaw) - (y0 + dy) * Sin(Yaw)

y2 = y1 * Cos(Pitch) - (z0 + dz) * Sin(Pitch) ' x2 = x1
z2 = y1 * Sin(Pitch) + (z0 + dz) * Cos(Pitch)

x3 = z2 * Sin(Roll) + x1 * Cos(Roll) ' y3 = y2
z3 = z2 * Cos(Roll) - x1 * Sin(Roll)

If enable = 1 Then
 Navigator_v = z3 * eye_scr / (eye_scr + scr_orig + y2) ' since y3 = y2
Else
 Navigator_v = 9999 ' we use argument "enable" different than 1 to make the point invisible
End If
End Function
Implementation:

The sample workbook contains three worksheets, the first two are identical, the only difference is that the latter is trimmed to have fast button response. The third worksheet is a demo and you must hit the “Run-Pause” button to make it work.

Thanks to John Kerr for his ideas of demo automation in VBA.