-

vorksheet

A Basic Flight SimulaforimEXCel #5 -

implementation of the perspective handling formulas and the presentation

sIee G

of the VBA the macros— e

- of the 39 pers}aectwe mtat:on and translation. forw\ulzxs <-' - i— F

e 0

- The tutowal then bweHy veviews 3D-2D pevspectlve convevslon Forw\ulﬁ
* and goes on to explalhmg their wo ksha“thplementatlm .

- Finally the section starts e{flaihmg the malvbs used by the model: Reset -
J and JoyStick. These Resef‘ macko is.very slMllar to the Reset macro used in
other projects %aysm'k macro is Q% the -sapie with the old JoyStick
macro explaine post ?n"Januo,rgﬂ.orLIE:the only leFerence being the
introduction. of two more-DoEvents statements gto allow For more prompt
charting) and the addition ;F a paste line (Frow\ iPresem‘ arvay into the
Past arvag)liniorder to emulate, the dynamic nature of the moqtel,

Add one more entry to the input parameter area: e o ouuan)
Q R | s | 1
- Copy the “Tutorial_4” worksheet and rename the new worksheet “Tutorial_5” o g;;ﬁ;ﬁ’,')'iggggggg:; 019004 [VeRERER
- Insert a new cell label: R84: “Delta y”, and name the range of S84, deltaY B e
| 84 deltay | =Throttle
- Insert the Delta y formula: S84: “=Throttle” 85

- We insert this separately as a variable since we might later want to easily increase the complexity of this
formula without touching the Present array matrix (which is more complicated to change).

Fill out the Present (Current) array with perspective formulas (2 rotations + 1 translation):

We derived the formulas for the landscape perspective transformation before:

Xcurrent 0 COS(Aaroll) Sir"(Aaroll) 'Sin(Aapitch) _Sin(Aaroll)'COS(Aapitch) Xprevious
ycurrent il Ay + O CoS(Aapitch) Sin(Aapitch) ’ yprevious
Zerrent 0 Sin(Aaroll) _COS(Aaroll) 'Sin(Aapitch) COS(Aczroll) 'COS(Aapitch) Zprevious

Use the above formulas, the named ranges and the Past array data to fill out the Present array:
=>V271: “=cosR*V401+sinRsinP*V402-sinRcosP*V403”
=>V272: “=cosP*V402+sinP*V403-Throttle”
=>V273: “=sinR*V401-cosRsinP*V402+cosRcosP*V403”
=> Copy range V271:V273 down into range V274:V393

=> Copy range V271:V393 to the right into to the range W271:BT393 and you have just
completed the Present array

<www.excelunusual.com> 2

Brief review of the 3D-2D perspective conversion:

-We derived the formulas for the landscape perspective transformation in a previous

post. A very brief knowledge refresh is given here.
- The “Target” point is situated in a 3D space past the glass screen (monitor surface)

and it has the coordinates (X, y, z). The eye of the observer is situated in point E.

- In a descriptive way, finding (u, v) screen image coordinates after the 3D-2D

perspective transformation is like shooting with an imaginary handgun from the eye E | Hole
to the “target” point and measuring the u-v coordinate of the bullet hole in the screen. { AN
— Gun . Gl
- Using right triangle similarity we can derive the following formulas (the derivation T HOF{'Igzgfa' Screen
o . Vertical
was done before and it's not given here: Plane
i P
(ObJect)+
. Where:
Ho;:;c:;tal i X * ES . .
U= ES + SO - ES is the distance
A o ’, - 'v/' + +
S A u y between eye and screen
e, @ y 7-ES - SO is the distance
- The following two triangles are similar triangles: EO’A’ and EBP’, NS S ES + SO + y between the screen and
therefore we can write the following proportionality equality: ” the Origin Of the ObjeC'[
§ = % And from here we can calculate “u”: u= i SyStem Of Coordlnates
EB BP ES+SO+y

The object has to be in front of the observer therefore EB (ES+SO+y>0) must be positive at all times to
prevent artifacts from being displayed on the screen. While displaying multipoint shapes, the perspective
conversion formulas have to be written as to eliminate any shape that has even one vertex which does not

satisfy the previous condition, otherwise annoying artifacts have been noticed in the image.

<www.excelunusual.com> 3

Add two more entries to the input parameter area:

- Insert a new cell label: R86: “Eye_Screen”, and name the range of S86, Eye Screen

84 delta y 5

- Insert a new cell label: R87: “Screen_Origin”, and name the range of S87, “Screen_Origin™ | ¥ Eye.Seroen[15|

- Assign the constant 10 to the Eye_Screen constant and O to the Screen_Origin constant |g > °

(you can play with those constants later and choose a pair based on your visual preference).

Fill out the u-v array with 3D-2D perspective conversion formulas: ES
X .
- It is very useful to make this array the same size as the Present and Past arrays. U=
_ . . . _ ES+SO+y

- The u-v array will contain stacked information as follows:

=> the to top row will contain u formulas 7-ES

=> the second top row will contain v formulas V= ES +SO+Yy

=> the third top row will contain a condition later to be used to determine which

triangles have a vertex behind the observers so we can v

‘hide” or mask them in order to avoid visual artifacts
=>the rows below will have the same vertically
stacked structure with periodicity of three
-Use the formulas to the right, the named ranges and
the Past array data to fill out the u-v array
>V531: “=V401*Eye_Screen/(Eye_Screen+Screen_Origin+V402)”
>V532: “=V403*Eye_Screen/(Eye_Screen+Screen_Origin+V402)”
>V533: “=IF(Eye_Screen+Screen_Origin+V402>0,1,0)”
>Copy range V531:V533 down into range V534:V653
>Copy range V534:V653 to the right into to the
range W531:BT653 and the u-v array is complete

NASA Dryden Flight Research Center Photo Collection
http://www.dfre.nasa.gov/Gallery/Photo/index.html
NASA Photo: E-3395A Date: 1958 Photo By: NASA 4

< WWW’ exce {u nusu a l. c 0 W\ > Holleman in X-1 Reaction Control Cockpit

Retrieving the index number (showing simulation progress):

- We would like to monitor in real time how our simulation progresses, which means visualizing the number of
times the macro went through the 3D-2D perspective calculation loop. In our case, since we chose the time step
to be 1 second, the index would be equal to the number of seconds passed since the start of the model.

- While we could just add a line in the Joystick macro which prints the iteration number in a cell we prefer not to
do that since it takes simulation time, instead take advantage of the one-operation cut and paste which will be
implemented anyway to make the scene rotate and translate.

- We already have two matrices, the Past and Present between which data is exchanged (the functions in
Present array take argument from the Past array and the results of the Present array are stored in the Past
array during the next time step).

- The paste operation is done over 3 x 51 x 41 points of data out of which 3 x 41 x 41 are landscape. We could
use the rest of space for the index number simulation, additional landscape and control panel instruments.

How is this implemented in the worksheet? -> In both the Present and the Past array introduce a section

for index. The present index will be a formula (indeX e = iNdeX,, + 1) and the past index will be a constant

integer number reset to O at the start of the takeoftf.

-The same macro running the joystick function will paste the results of the present array calculations in the past

array and do this each cycle of the Do loop. In consequence the index will increase as the simulation

progresses and this is because the arguments in the present array function are taken from the past.

- Since we have plenty of room unused we can add a title for identification both areas where the index is

calculated, and we can change the background color for easy |dent|f|cat|on
=> Insert a label in each of Present and Past #
matrices: BK271: “Index”, BK401: “Index” 267 396

268 397

=> BK272: “=BK402+1” g rreser! 2 past

271 400

=> BK402: “=0” 272 401

273 402

274 5
A0A

<www.excelunusual.com> 1

2 EP YT

BJ BK Bl

[=]{=]}[=]
[=li=)=]=}{=]

calculate the perspective image during the first time step.

- The index value in the Past array is reset to zero.

The JoyStick macro :

- The code for this macro has to be placed in a module
mouse coordinate will not work in any sheet section of

Sub Reset()

[V401:BJ523] = [V81:BJ203].Value
[BK402] =0

End Sub

otherwise it won’t work (the feature retrieving the
the VBA project)

- In this section of the tutorial only the API declaration and PointAPI structure will be presented below. The
presentation of the JoyStick macro, which is 90% similar to the old joystick macro will be continued in the

next section.

- This part of the VBA code like all declarations has to be placed on the top of the page!!!

Public Declare Function GetCursorPos Lib "user32"
(Some_String As POINTAPI) As Long

Type POINTAPI
X As Long
Y As Long
End Type

declaration of a special structt
function. It is essentially the p
screen started to be measure

declaration of a
Dim RunPause As Boolean <—— track if the macr

Declaration of a special APl (Application
} Programming Interface) function which
retrieves the cursor position
uire (Point API) used as the output type of the previous API
air of coordinates (as long integers) of the cursor on the
] from the upper left corner of the screen.

Boolean variable which has the role of a “switch”, keeping
D is running or is stopped. This will allow the macro to be

started or pause

d by clicking the same object (the joystick chart).

