Modeling Logic Gates with Delay = Part*?
by George Lungu

- In the previous-section of this tutorial we concluded that in order to be able to simulate with decentarecision delay in single-stage logic gates, we only need to nteaduce a propagation deley caused solely by rise on oll. time. This makes the ode of a single-stage gate farnilysumple and easy to progran ind single spreadsheet celig using built-in formulas thence mal ing the model much faster than employing user defined functions).
- This second-half of the tutorial derives the final formulas and a delay based model is implemented in Excel 2003.

The simplified equivalent model:

- We use the model to the right, which (as we will see) can be written using spreadsheet built-in functions in a single cell without the need to use (very slow) user defined functions $=\ggg \ggg$
- In the previous series of tutorials about ideal logic gates we have already seen how to describe an inverter and a few other ideal logic gates in equations.
Let's now see how we can combine that the ideal logic gate description with a numerical low pass filter solution.

A 1-pole Low Pass Filter numerical solution:

- This topic was treated on this blog before, therefore it will be treated lightly here.
- In order to numerically model a time dependant process we first need to sample its time function at discrete intervals $d t=h$

- Most of the physical processes can be described by differential equations. For easy solutions we need to find a way of expressing derivatives in an approximate but easy way. The easiest way would be to approximate the tangent to the curve in point T with the secant to the curve (there are three options available).

The first transistor - invented at Bell Labs in 1947

Three ways of approximating the tangent (first derivative) to a curve:

- To the left there are three different ways of simple approximations to the tangent using the actual value of the function in various points in time.

Definition: $\frac{d f(t)}{d t}=\lim _{d t \rightarrow 0}\left[\frac{f(t+d t)-f(t)}{d t}\right]$

Forward estimate: $\frac{d f(t)}{d t} \approx \frac{f(t+h)-f(t)}{h}$

Backward estimate: $\frac{d f(t)}{d t} \approx \frac{f(t)-f(t-h)}{h}$

- Let's use the forward estimate to numerically solve the system below:

R
Central estimate: $\frac{d f(t)}{d t} \approx \frac{f(t+h)-f(t-h)}{2 \cdot h}$

Pay attention to colors

From Ohm's law: $\quad u_{i n}(t)-u_{\text {out }}(t)=R \cdot i$
From of current intensity definition: $i=\frac{d q}{d t}$
From the capacitance definition: $\quad C=\frac{d q}{d u_{\text {out }}}$

$$
u_{\text {in }}(t)-u_{\text {out }}(t)=R \cdot C \cdot \frac{u_{\text {out }}(t+h)-u_{\text {out }}(t)}{h}
$$

After some minor algebraic manipulation After some minor algebraic manipulation
we reach the final formula for $u_{\text {out }}(t)$: $\quad u_{\text {out }}(t+h)=\frac{h}{R \cdot C} \cdot\left[u_{\text {in }}(t)-u_{\text {out }}(t)\right]+u_{\text {out }}(t)$

The equation is valid for any moment in time. Moving it back one time step " h " (which means $t=t-h$) we get:

$$
u_{\text {out }}(t)=\frac{h}{R \cdot C} \cdot\left[u_{\text {in }}(t-h)-u_{\text {out }}(t-h)\right]+u_{\text {out }}(t-h)
$$

The final formulas for seven different logic gate models with delay:

$$
u_{\text {out_INV }}(t)=\frac{h}{R \cdot C} \cdot\left[\text { if }\left(u_{A}(t-h)>\frac{v d d}{2}, 0, v d d\right)-u_{\text {out }}(t-h)\right]+u_{\text {out }}(t-h)
$$

$$
u_{\text {out }-A N D}(t)=\frac{h}{R \cdot C} \cdot\left[\text { if }\left(A N D\left(u_{A}(t-h)>\frac{v d d}{2}, u_{B}(t-h)>\frac{v d d}{2}\right), v d d, 0\right)-u_{\text {out }}(t-h)\right]+u_{\text {out }}(t-h)
$$

$$
u_{\text {out_NAND }}(t)=\frac{h}{R \cdot C} \cdot\left[\text { if }\left(A N D\left(u_{A}(t-h)>\frac{v d d}{2}, u_{B}(t-h)>\frac{v d d}{2}\right), 0, v d d\right)-u_{\text {out }}(t-h)\right]+u_{\text {out }}(t-h)
$$

$$
u_{\text {out_or }}(t)=\frac{h}{R \cdot C} \cdot\left[\text { if }\left(A N D\left(u_{A}(t-h)<\frac{v d d}{2}, u_{B}(t-h)<\frac{v d d}{2}\right), 0, v d d\right)-u_{\text {out }}(t-h)\right]+u_{\text {out }}(t-h)
$$

$$
u_{\text {out } t_{-} \text {NOR }}(t)=\frac{h}{R \cdot C} \cdot\left[i f\left(A N D\left(u_{A}(t-h)<\frac{v d d}{2}, u_{B}(t-h)<\frac{v d d}{2}\right), v d d, 0\right)-u_{\text {out }}(t-h)\right]+u_{\text {out }}(t-h)
$$

$$
\begin{aligned}
& u_{\text {out_XOR }}(t)=\frac{h}{R \cdot C} \cdot\left[i f\left(\operatorname{OR}\left(\operatorname{AND}\left(u_{A}(t-h)>\frac{v d d}{2}, u_{B}(t-h)<\frac{v d d}{2}\right), \operatorname{AND}\left(u_{A}(t-h)<\frac{v d d}{2}, u_{B}(t-h)>\frac{v d d}{2}\right)\right), v d d, 0\right)-u_{\text {out }}(t-h)\right]+u_{\text {out }}(t-h) \\
& \left.u_{\text {out }}^{-X N O R} \text { (} t\right)=\frac{h}{R \cdot C} \cdot\left[i f\left(\operatorname{OR}\left(\operatorname{AND}\left(u_{A}(t-h)>\frac{v d d}{2}, u_{B}(t-h)<\frac{v d d}{2}\right), \operatorname{AND}\left(u_{A}(t-h)<\frac{v d d}{2}, u_{B}(t-h)>\frac{v d d}{2}\right)\right), 0, v d d\right)-u_{\text {out }}(t-h)\right]+u_{\text {out }}(t-h)
\end{aligned}
$$

Excel 2003 implementation:

- Copy the last file "Logic_Gates.xls" and rename the new file "Gate_Delay.xls"
- Delete the first four worksheets and leave only the last one named "Basic_4"
- Rename the remaining worksheet: "Seven_Gates_with_Delay"
- Insert a new name for cell A21: "r_" and type a "0.5" in cell A21.
- Change the formulas in the following cells:
- Cell D37: "=time_step*(IF(B38>vdd/2,0,vdd)-D38)/r_c+D38"
- Cell E37: "=time_step*(IF(AND(B38>vdd/2,C38>vdd/2),vdd,O)-E38)/r_c+E38"
- Cell F37: "=time_step*(IF(AND(B387vdd/2,C387vdd/2),0,vdd)-F38)/r_c+F38"
- Cell G37: "=time_step*(IF(AND(B38<vdd/2,C38<vdd/2),O,vdd)-G38)/r_c+G38"
- Cell H37: "=time_step*(IF(AND(B38<vdd/2,C38<vdd/2),vdd,O)-H38)/r_c+H38"

- Cell 137: "=time_step*(IF(OR(AND(B38>vdd/2,C38<vdd/2),AND(B38<vdd/2,C38>vdd/2)),vdd,O)138)/r_c+138"
- Cell J37: "=time_step*(IF(OR(AND(B38>vdd/2,C38<vdd/2),AND(B38<vdd/2,C38>vdd/2)),0,vdd)J38)/r_c+J38"
- After all these formula alterations copy range D37:J37 down to row 837 and you are ready to test the model.

Running and testing the animated model:

- The snapshots are taken at the following values of RC $\left(r_{-} c\right)$ constants : $0.2 n \mathrm{~s}, 0.6 \mathrm{~ns}$ and 2 ns .
- The speed of the model is confirmed very good, namely 663 frames/minutes with the chart visible and 5168 frames/minute with the chart out of sight. This is because no user defined functions were used throughout the model.

$R C=0.2 \mathrm{~ns}$

$$
R C=3 n s
$$

