
<www.excelunusual.com> 1<www.excelunusual.com> by George Lungu

- In this fourth and last section of the ring oscillator tutorial a joystick is introduced to control
the RC equivalent constant and the number of delay stages of the model.

An Interactive Ring Oscillator Model - Part 4 by George Lungu

The virtual joystick - the chart:

- We will use elements of a previously created virtual joystick model.
- In the original file copy the second worksheet “Tutorial_3” and
rename the new worksheet “Tutorial_4”. Also don’t forget to
reassign the new “enable” and “Start-Pause” macros to the new buttons.
- The joystick will be implemented as a 2D scatter chart and a macro.
- Once the joystick chart will be created and the “joystick” macro
assigned to it, clicking the chart will start the “JoyStick”
macro which will continuously update (in range N50:O50) the mouse
coordinates relative to the initial click point on the screen which was
initially clicked (when the macro was triggered).
- Range M35:M37 contains labels. Range N36:O36 contains the relative
x-y coordinates of the mouse relative to the initial click point.
- Range N37:O37 contains the previously mentioned x-y coordinates (from range N36:O36) but
limited to [-180, +30] for X and +/- 100 for Y.
- Range N38:O38 is the origin of the joystick on the chart and this range is filled with two zeros but it
could be later adjusted if needed. The 2D scatter chart has both axes scaled accordingly (see the
previous paragraph) and the data charted is from range N37:O38. Let’s now see the macro which
retrieve the relative mouse coordinates (turn to next page) => => => => => => =>

<www.excelunusual.com> 2

A few explanations about the “JoyStick()” macro – place it in a module:

Public Declare Function GetCursorPos _

Lib "user32" (Some_String As POINTAPI) As Long

Type POINTAPI

X As Long

Y As Long

End Type

The following are declarations:
Declaration of a special API (Application

Programming Interface) function which

retrieves the cursor position

Declaration of a special structure (Point API) used as the output type of the previous

API function. It is essentially the pair of coordinates (as long integers) of the cursor

on the screen started to be measured from the upper left corner of the screen.

Dim RunPause As Boolean

Sub JoyStick()

Dim Pt0 As POINTAPI

Dim Pt1 As POINTAPI

RunPause = Not RunPause

GetCursorPos Pt0

Do While RunPause = True

DoEvents

GetCursorPos Pt1

[N36] = Pt1.X - Pt0.X

[O36] = -Pt1.Y + Pt0.Y

Loop

End Sub

Declaration of the macro

Declaration two Point API type structures, one as initial click coor-

dinates and the second as the current (dynamic) cursor coordinates

Conditional “Do” loop declaration (start)

Always add this statement if you ever need to stop the loop

manually or update a chart while the loop is running

Every loop cycle calculate the relative coordinates and display them in the

range “N36:O36” (figure out why I wrote those formulas the way I wrote them)
End of “Do” loop

End of macro declaration

Assigns variable “Pt0” the initial click coordinates

Every loop cycle assigns “Pt1” the cursor coordinates

Boolean “flip”, if the macro is stopped this will start it and vice versa

Boolean variable declaration which has the role of a “switch”, keeping

track if the macro is running or is stopped. This will allow the macro to

be started or stopped using the same button

<www.excelunusual.com> 3

-Let’s update the joystick chart with the following features:

-the horizontal movement of the joystick head to the left will change the number of delay
stages within the ring from 2 (extreme left) to 7 (near the vertical axis)
- the horizontal movement to the right will keep 7 delay stages within the chain but will
also introduce a chopping of the signal “Enable” with a period between 50 ns and 5ns
- the vertical movement of the joystick will change the RC constant of the delay stages
with a very large (5ns) time constant at the bottom and a very low (0.05ns) at the top.
This needs to be a nonlinear exponential function since we are talking about two decades of
variation or RC and a linear over 200 pixel variation of the mouse coordinate.

A review of the joystick spreadsheet formulas and the joystick chart:

Final implementation of the joystick spreadsheet formulas and the joystick chart:

- A preliminary joystick chart was described on the first page of this presentation, however because of

the new requirements, let’s describe a new procedure for creating an upgraded chart version.

- Cell N36: “-100”, Cell O36: “100” (these are not important since the macro will change them a lot

during the joystick operation).

- Cell N37: “=IF(N36<0,MAX(-180,N36),MIN(N36,60))”, CellO37: “=IF(O36<0,0,MIN(O36,200))” (limiting movement

effects of the mouse cursor on the joystick head)

- Cell N38: “0”, Cell O38: “0” (these are offset correction values and could later be used to shift the

origin of the joystick to a different position on the chart if necessary).

- The chart has the X axis scaled between -180 and +60 with tick marks and grid lines at 30 units

- The chart has the Y axis scaled between 0 and +200 with tick marks and grid lines at 50 units

- Format the chart to your taste and after you finish, right click the chart => Assign Macro => JoyStick

<www.excelunusual.com> 4

The virtual joystick – a final snapshot:

- For additional insight, the reader is advised to

read the Joystick tutorial from January 2011.

The formula for the number of stages:

- We would like to have 2 delay stages for:

-180 <= X_joystick < -150

- We would like to have 3 delay stages for:

-150 <=X_joystick < -120

- We would like to have 4 delay stages for:

-120 <=X_joystick < -90

- We would like to have 5 delay stages for:

-90 <=X_joystick < -60

- We would like to have 6 delay stages for:

-60 <=X_joystick < -30

- We would like to have 7 delay stages for:

-30 <=X_joystick < +60

- The final spreadsheet formula: Cell N40: “=IF(AND(-180<=N37,N37<-150),2,0)+IF(AND(-

150<=N37,N37<-120),3,0)+IF(AND(-120<=N37,N37<-90),4,0)+IF(AND(-90<=N37,N37<-60),5,0)+IF(AND(-

60<=N37,N37<-30),6,0)+IF(AND(-30<=N37,N37<=60),7,0)”

- Let’s now give an exponential value to the RC constant controlled by the vertical movement of

the joystick: Cell N41: “=5/10^(O37/100)” – the RC range given by this formula will be between

RC=5ns when the joystick head is on the bottom of the joystick chart and RC=0.05ns when the

joystick head is on the top of the joystick chart.

<www.excelunusual.com> 5

Create an “enable” data series based on a periodic signal:
- We will create this series in column K: Cell K37: “=K38+time_step” and auto-fill down to K136
- Also we need to change the formulas in the “enable” (B) column: Cell B37:
“=IF(N42="NA",vdd,vdd*(1+SIGN(SIN(2*PI()*K37/N42)))/2)” – this formula will keep the signal
logic high if the value in cell N42 is “NA” (Not Applicable) and will generate a rectangular signal with
the period equal to the value in cell N42 if the value in cell N42 is different than the string “NA”.
Drag copy cell B37 down to cell B136.

- We decided that the horizontal movement to the right of the joystick head will keep 7 delay stages
within the chain but will also introduce a chopping of the signal “Enable” with a period between 5 ns
(to the extreme right where x=60) and 50ns (for very small but positive x-coordinates)
- Let’s write the formula for the period of the “Enable” chopping signal:

Cell N42: “=IF(N37>0,50*10^(-N37/60),"NA")
- Also make sure to delete the “Enable” button since now, the enable signal status will be decided by
the position of the joystick head.

Create an “Reset” macro:
- The macro code below is necessary in case the oscillator
reaches unreasonable states (very large values in mis-converged
simulations) especially now that we have a joystick controlling
several aspects of the simulation.
- We place this macro in Module1 and
assign it to the Start-Pause button after
changing its color to red and replacing
the text inside with “Reset”.
-We will later see that we don’t need the
-“start_pause” macro anymore.

Sub Reset()

[B137:K3037].Clear

End Sub

<www.excelunusual.com> 6The end

Update the “Joystick” macro:

- We recycled the “Start_Pause” button and turned it into a
“Reset” button since we won’t need the “start_pause” macro.
- This is because we incorporated the “start-pause” macro
functionality in the “JoyStick” macro. See the new code here => =>

Public Declare Function GetCursorPos _

Lib "user32" (Some_String As

POINTAPI) As Long

Type POINTAPI

X As Long

Y As Long

End Type

Dim RunPause As Boolean

Sub JoyStick()

Dim Pt0 As POINTAPI

Dim Pt1 As POINTAPI

RunPause = Not RunPause

GetCursorPos Pt0

Do While RunPause = True

DoEvents

GetCursorPos Pt1

[N36] = Pt1.X - Pt0.X

DoEvents

[O36] = -Pt1.Y + Pt0.Y

DoEvents

[B137:K3037] = [B37:K2937].Value

DoEvents

Loop

End Sub

Update the joystick chart:

- The joystick chart as seen in page #4 is perfectly functional,
however it would be nice to add various shapes and text in the
background which would suggest functionality associated with
the chart.
- You can create any assemble of
shapes and text as long as they
are properly sized with respect
to the chart and are grouped
together.
-The chart area together with
the plot area of the chart need
to be transparent (select the
option “None” while formatting
them)
-Move the chart on top of the group of shapes but make sure
the chart is on top (use the “Order” option in the “Draw menu”).
-At the end, group the chart with the original assemble of shapes
(use the Group feature in the Draw menu) and assign the proper macro (“JoyStick” in this case) to the
final group.

number of delay stages

2 3 4 5 6 7 7 7

c
h
o
p
p
e
d
 e

n
a
b
le

c
h
o
p
p
e
d
 e

n
a
b
le

enable - logic high

5
n
s
 =

=
>
>

R

C

=
=
>
>
 0

.0
5
n
s

0

50

100

150

200

-180 -150 -120 -90 -60 -30 0 30 60

1

