This section updates an angle formula so that the virtual glider can now perform both backward and forward loops, as well as inverted flight. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #11- 360 full coverage – loops by George Lungu – This section fixes an angle issue so that the virtual aircraft will now be able to perform both backward and forward loops. Upgrading… Read More... "Longitudinal Aircraft Dynamics #11 – full 360 degree operation – aerobatics, inverted flight and loops – FINAL"

## Longitudinal Aircraft Dynamics #10 – implementing the numerical method

This section of the turorial finalizes the main dynamics calculations and implements the numerical method for approximating the glider trajectory. At this point, the model is already functional but with a crude interface. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #10- the numerical method by George Lungu – This section deals worksheet implementation of the numerical setup for a dynamic modeling of the flight. The… Read More... "Longitudinal Aircraft Dynamics #10 – implementing the numerical method"

## Longitudinal Aircraft Dynamics #9 – more about forces and momenta – preliminary validation and testing

This tutorial finalizes the implementation of the forces and momenta acting on the plane. It also initiates some hand testing and validation of the overall dynamics of the plane. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #9- finalizing the dynamics – preliminary validation by George Lungu – This section continues with the dynamics formulas governing our 2D plane. Worksheet lever calculation formulas: – Copy… Read More... "Longitudinal Aircraft Dynamics #9 – more about forces and momenta – preliminary validation and testing"

## Longitudinal Aircraft Dynamics #8 – worksheet implementation of the dynamics equations (c)

This section continues the worksheet implementation of the dynamics formulas for aerodynamic forces and momenta. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #8- worksheet implementation of the real dynamics by George Lungu – This section continues with the dynamics formulas governing our 2D plane. Worksheet implementation of the force calculation formulas: – We will calculate these forces in a new area of the worksheet.… Read More... "Longitudinal Aircraft Dynamics #8 – worksheet implementation of the dynamics equations (c)"

## Longitudinal Aircraft Dynamics #7 – worksheet implementation of the dynamics equations (b)

This section continues the worksheet implementation of the dynamics formulas. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #7- worksheet implementation of the real dynamics by George Lungu – This section continues with the dynamics formulas governing our 2D plane and their worksheet implementation. Some Reynolds number corrections: – We introduced one single named cell for the Reynolds number (Re) when in fact there… Read More... "Longitudinal Aircraft Dynamics #7 – worksheet implementation of the dynamics equations (b)"

## Longitudinal Aircraft Dynamics #6 – worksheet implementation of the dynamics equations (a)

In this section, the parameters cl, cd and cm are scaled back to the force of lift, drag and the pitching moment of the aircraft. After that, the numerical modeling scheme is described together with the macros behind it. At the end, the formulas for the angles of attack of the wing and the horizontal stabilizer are introduced. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #6- worksheet… Read More... "Longitudinal Aircraft Dynamics #6 – worksheet implementation of the dynamics equations (a)"