This is an upgraded version of the aeroscope. Besides improving of certain aspects of the old version, this version has both the main wing and the horizontal stabilizer controlled by a virtual joystick (presented on this blog before and used extensively). The horizontal movement of the joystick controls the angle of attack of the main wing and the vertical movementContinue Reading

This is the “Aeroscope”, an oscilloscope style 2D dynamic flight simulator. It uses a the glider model designed in the previous tutorial. The glider is fully adjustable so you can change different parameters during the flight. Just hit “Run_pause” and the model will start. Reset it using the red button whenever you wish or whenever it breaks the convergence. ForContinue Reading

This section updates an angle formula so that the virtual glider can now perform both backward and forward loops, as well as inverted flight. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #11- 360 full coverage – loops by George Lungu – This section fixes an angle issue so that the virtual aircraft will now be able to perform both backward and forward loops. UpgradingContinue Reading

This section of the turorial finalizes the main dynamics calculations and implements the numerical method for approximating the glider trajectory. At this point, the model is already functional but with a crude interface. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #10- the numerical method by George Lungu – This section deals worksheet implementation of the numerical setup for a dynamic modeling of the flight. TheContinue Reading

This tutorial finalizes the implementation of the forces and momenta acting on the plane. It also initiates some hand testing and validation of the overall dynamics of the plane. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #9- finalizing the dynamics – preliminary validation by George Lungu – This section continues with the dynamics formulas governing our 2D plane. Worksheet lever calculation formulas: – CopyContinue Reading

This section continues the worksheet implementation of the dynamics formulas for aerodynamic forces and momenta. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #8- worksheet implementation of the real dynamics by George Lungu – This section continues with the dynamics formulas governing our 2D plane. Worksheet implementation of the force calculation formulas: – We will calculate these forces in a new area of the worksheet.Continue Reading

This section continues the  worksheet implementation of the dynamics formulas. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #7- worksheet implementation of the real dynamics by George Lungu – This section continues with the dynamics formulas governing our 2D plane and their worksheet implementation. Some Reynolds number corrections: – We introduced one single named cell for the Reynolds number (Re) when in fact thereContinue Reading

In this section, the parameters cl, cd and cm are scaled back to the force of lift, drag and the pitching moment of the aircraft. After that, the numerical  modeling scheme is described together with the macros behind it. At the end, the formulas for the angles of attack of the wing and the horizontal stabilizer are introduced. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #6- worksheetContinue Reading

This section finalizes the aircraft (glider) by inserting the wing, the horizontal stabilizer and a center of gravity (CG) sprite in the layout. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #5- putting the glider together by George Lungu – This section puts together the fuselage, main wing and stabilizer with the proper scale, shift and rotation determined by the input parameters. Scaling andContinue Reading

This section of the tutorial explains how to create the  2D aircraft components for the animated longitudinal stability model. The first part deals with extracting the x-y coordinates for the fuselage, canopy, vertical stabilizer and rudder. The second part handles the main wing airfoil and the horizontal stabilizer airfoil. All thses parts will be put together in the next section.Continue Reading

This section discusses the layout of the virtual plane and provides for the worksheet implementation of the plane dimensions as input parameters controlled by spin buttons and macros. In the final part a freeform is used to generate raw data for the fuselage. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #3- defining the virtual aircraft by George Lungu – This section of the tutorialContinue Reading

The first macro created in this section of the tutorial improves on the previously developed macro by correcting the up-down orientation of the shape, referencing the shape position to the coordinate of the first drawn point and closing the shape by repeating the coordinates of the first point at the end of the table. A last macro is then created whichContinue Reading

Using autoshape freeforms is a very easy way to duplicate object outlines from pictures. It is convenient to create a freeform and once created, its vertices (points) can be edited with without difficulty. Aditional points can be inserted and others can be deleted. This is a tutorial about a series of macros which allow the extraction of freeform vertex coordiantes to a worksheetContinue Reading

This tutorial will introduce the reader to creating simple drawings in Excel by using the “Freeform” auto shape. Later on, we will be able to convert this data in x-y-z vertex information for various models by using a macro. [sociallocker][/sociallocker] Drawing in Excel – part #1 – an introduction tocreating freeform type autoshapes – On this blog we will soon need toContinue Reading

This is another basic demo investigating the feasibility of using anaglyph wireframes to plot scientiffic data. Open the attached worksheet and with your 3D glasses on, watch the chart. The data is a dynamic temperature map obtained from a 2D heat transfer model in a metal plate. The heat model is complete and you can run it with various parameters. You canContinue Reading