This is the “Aeroscope”, an oscilloscope style 2D dynamic flight simulator. It uses a the glider model designed in the previous tutorial. The glider is fully adjustable so you can change different parameters during the flight. Just hit “Run_pause” and the model will start. Reset it using the red button whenever you wish or whenever it breaks the convergence. ForContinue Reading

This section updates an angle formula so that the virtual glider can now perform both backward and forward loops, as well as inverted flight. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #11- 360 full coverage – loops by George Lungu – This section fixes an angle issue so that the virtual aircraft will now be able to perform both backward and forward loops. UpgradingContinue Reading

This section of the turorial finalizes the main dynamics calculations and implements the numerical method for approximating the glider trajectory. At this point, the model is already functional but with a crude interface. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #10- the numerical method by George Lungu – This section deals worksheet implementation of the numerical setup for a dynamic modeling of the flight. TheContinue Reading

This tutorial finalizes the implementation of the forces and momenta acting on the plane. It also initiates some hand testing and validation of the overall dynamics of the plane. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #9- finalizing the dynamics – preliminary validation by George Lungu – This section continues with the dynamics formulas governing our 2D plane. Worksheet lever calculation formulas: – CopyContinue Reading

This section continues the worksheet implementation of the dynamics formulas for aerodynamic forces and momenta. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #8- worksheet implementation of the real dynamics by George Lungu – This section continues with the dynamics formulas governing our 2D plane. Worksheet implementation of the force calculation formulas: – We will calculate these forces in a new area of the worksheet.Continue Reading

This section continues the  worksheet implementation of the dynamics formulas. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #7- worksheet implementation of the real dynamics by George Lungu – This section continues with the dynamics formulas governing our 2D plane and their worksheet implementation. Some Reynolds number corrections: – We introduced one single named cell for the Reynolds number (Re) when in fact thereContinue Reading

In this section, the parameters cl, cd and cm are scaled back to the force of lift, drag and the pitching moment of the aircraft. After that, the numerical  modeling scheme is described together with the macros behind it. At the end, the formulas for the angles of attack of the wing and the horizontal stabilizer are introduced. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #6- worksheetContinue Reading

This section finalizes the aircraft (glider) by inserting the wing, the horizontal stabilizer and a center of gravity (CG) sprite in the layout. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #5- putting the glider together by George Lungu – This section puts together the fuselage, main wing and stabilizer with the proper scale, shift and rotation determined by the input parameters. Scaling andContinue Reading

Most of people have heard of Newton’s second law, mass, moment of inertia or the definition of the acceleration both linear and angular. The stuff presented here is elementary (9th grade), yet it is generally not properly understood. What happens when one applies a bunch arbitrary forces on an arbirtarily shaped body? The resultant force vector produces a linear accelerationContinue Reading

This section of the tutorial explains how to create the  2D aircraft components for the animated longitudinal stability model. The first part deals with extracting the x-y coordinates for the fuselage, canopy, vertical stabilizer and rudder. The second part handles the main wing airfoil and the horizontal stabilizer airfoil. All thses parts will be put together in the next section.Continue Reading

This section discusses the layout of the virtual plane and provides for the worksheet implementation of the plane dimensions as input parameters controlled by spin buttons and macros. In the final part a freeform is used to generate raw data for the fuselage. [sociallocker][/sociallocker] Longitudinal Aircraft Dynamics #3- defining the virtual aircraft by George Lungu – This section of the tutorialContinue Reading

In the previous section, the main wing airfoil and the horizontal stabilizer airfoil were simulated using Xflr5. The three coefficients, lift, drag and moment were then interpolated on charts in Excel using 4th and 5th order polynomials. This section shows a few tricks about how to easily introduce those 60 equations as spreadsheet formulas in Excel ranges. It also presents a simple linear interpolation method across the ReynoldsContinue Reading

This is a tutorial about using a free aerodynamic modeling package (Xflr5) to simulate two airfoils in 2D (the main wing and the horizontal stabilizer) for ten different Reynolds numbers, then using Excel to extract the approximate polynomial equations of those curves (cl, cd and cm) and based on them, simulate a 2D aircraft as an animated model. This section deals withContinue Reading

The previous section implemented and charted the ping-pong polar diagrams in a spreadsheet and showed a reasonable similarity, for moderate angles of attack, between these diagrams and the ones modeled using Xflr5, a virtual wind tunnel. This section introduce the  concept Reynolds number and it also contains a very brief introduction to Xflr5, the free virtual wind tunnel software. AerodynamicsContinue Reading

This section of the tutorial implements the lift and drag formulas in a worksheet, creating and charting the polar diagrams for an ultra simplified ping-pong model of an airfoil. Comparing these diagrams with ones obtained by using a virtual wind tunnel (XFLR5) we can see a decent resemblance for moderate angles of attack (smaller than about 8 degrees in absolute value).Continue Reading